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Abstract—The simple yet subtle structures of faces make it
difficult to capture the fine differences between different facial
regions in the depth map, especially for consumer devices like
Kinect. To address this issue, we present a novel method to
super-solve and recover the facial depth map nicely. The key
idea of our approach is to exploit the learning-based method
to obtain the reliable face priors from high quality facial depth
map to further improve the depth image. Specifically, we utilize
the neighbor embedding framework. First, face components are
decomposed to train specialized dictionaries and reconstructed,
respectively. Joint features, i.e. color, depth and position cues,
are put forward for robust patch similarity measurement. The
neighbor embedding results form high frequency cues of facial
depth details and gradients. Finally, an optimization function
is defined to combine these high frequency information to yield
depth maps that fit the actual face structures better. Experimental
results demonstrate the superiority of our method compared to
state-of-the-art techniques in recovering both synthetic data and
real world data from Kinect.

I. INTRODUCTION

In recent years, with the development of consumer-level
depth cameras such as Time-of-Flight (ToF) and Microsoft
Kinect, the easy and real-time acquisition of depth images
becomes available. Since depth map is insensitive to the
environment and can provide spatial information, it has been
widely used in 3D reconstruction, semantic scene analysis and
object recognition, especially for human faces. However, the
applications of depth information is significantly constrained
by the limited resolution and noises of sampled depth maps.
Many researchers try to solve this issue through super resolu-
tion (SR) approaches.

The methods for depth map super resolution can be divided
into two categories: multiple depth map fusion [1], [2], [3]
and single depth image super resolution [4], [5], [6]. Multiple
depth map fusion techniques merge several unaligned low-
quality depth maps to reconstruct a high-quality depth map.
However, usually only one depth map is available in practice.
Single depth image super resolution refers to recovering the
information with a single low-quality input. For many depth
cameras like Kinect, a corresponding high-quality color image
is available and can be used as the guidance to improve the
depth map recovery, which refers to RGB-D super resolution
[7], [8], [9]. According to the super resolution strategies,
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RGB-D super resolution can be categorized as filter-based,
optimization-based and learning-based methods.

Filter-based methods are widely adopted by early works.
They usually filtered depth maps adaptively according to the
structural information. In [10], the bilateral filter is used to
consider both depth structures and color intensities. Inspired
by successful stereo matching algorithms, Yang et al. [11]
iteratively employed a bilateral filter to improve depth map
super resolution. He et al. [7] proposed guided filtering as
an edge-preserving smoothing operator like the bilateral filter.
Liu et al. [12] proposed to use geodesic distance to calculate
the filter weight and recover shaper edges. The performance of
these methods relies on the high correlation between depth and
color information. Their filter weights can be misled for facial
depth maps because the color of human faces lacks changes.

More recently, optimization-based methods have been de-
veloped for RGB-D super resolution. MRF is widely used
to model local priors in image enhancement [?], [13], [14].
Depth map refinement based on MRF optimization was first
explored in [13]. Park et al. [14] add a non-local means term
to their MRF formulation to preserve structures and remove
outliers. Yang et al. [15] used the Auto-Regressive (AR) model
to formulate the depth refinement problem. In [8], The upsam-
pling is formulated as a global energy optimization problem
using Total Generalized Variation (TGV) regularization. These
methods can produce high-quality depth maps if the energy
term which reflects image priors is well designed. However for
facial depth maps, defining an universal face prior artificially is
a tough task. This problem can be solved by adopting learning
algorithms to automatically learn good face priors.

Learning-based methods attempt to model statistical depen-
dencies between color and depth signals in RGB-D features
through proper dictionaries. With edges extracted from a color
image, Li et al. [16] trained a joint dictionary consisting of
both the gradient of the depth map and the edge information of
the color image. However, this method does not consider the
discontinuities between color edges and depth edges. To tackle
this problem, Tosic and Drewes [17] proposed a method based
on a novel second order cone program for recovering signals
from their common underlying 3D features. But this approach
may yield depth distortions. Then Kwon et al. [18] refined the
depth map by the normalized Absolute Gradient Dot Product
(nAGDP), which resulted in good performances. Although the
existing learning-based methods are capable to introduce extra
high-quality depth information to yield better performance,
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Fig. 1. Main framework of the proposed method.

seldom do they well study and utilize high-level human face
prior knowledge. In our work, we focus on both high-level
facial cues and low-level depth and intensity cues. These cues
are carefully designed to jointly depict image patches of facial
depth maps to learn reliable facial priors.

In this paper, we propose a learning-based approach for
dealing with the problem of low-quality facial depth maps
through neighbor embedding. Utilizing an external facial depth
map dataset, our method can achieve high quality results
from only a single noisy low resolution depth map and
its corresponding color image. The target facial depth map
first is decomposed into server facial component regions for
reconstruction. Then, an RGBD-Position(RGBD-P) feature is
calculated to combine high-level and low-level information
to precisely measure patch similarity. Finally a global op-
timization function is used to perform specialized gradient
constraints over the reconstructed depth map to further impose
facial relative elevation priors.

The performance of our algorithm is evaluated with state-
of-art depth map enhancement methods. Our approach demon-
strates superior performance in both synthetic depth maps and
Kinect depth data. In summary, the main contribution of our
work are as follows:

• Joint scale-independent RGBD-P feature. We design
robust RGBD-P features that take both high-level facial
component position information and low-level intensity
and depth information into account. This feature effec-
tively solves the scale problem and the ambiguity problem
for super resolution.

• Face prior analysis and utilization in neighbor em-
bedding model. In our neighbor embedding depth map
enhancement framework, we take full use of face prior
knowledge from the external dataset. Thus the precise
depth variation of face structures can be well recovered
even the depth data is severely degraded.

The rest of this paper is organized as follows: Section
II describes the proposed facial depth map super resolution
approach. Experimental results are shown in Section III and
concluding remarks are given in Section IV.

II. PROPOSED METHOD

In this section, the proposed facial depth map enhancement
method is presented. Given a target Low Resolution (LR)
facial depth map Xl and its corresponding High Resolution
(HR) color image as input, we estimate the target HR depth
map Xh with the help of the coupled LR and HR dictionaries
Y = {Yl,Yh} = {yil ,yih}Ni=1, where yil/y

i
h are paired

LR/HR patches from external source depth maps and N is
the dictionary size. Figure 1 shows the framework of the
proposed method. To fully exploit the structural prior of
human faces, we first decompose a whole face into facial
components, based on the high-quality color image. Then,
for each component, a neighbor embedding is performed
in RGBD-P feature space, which takes intensity, depth and
position information into accounts. Specifically, for each patch
xl in Xl, we extract its RGBD-P feature and find its K
nearest neighbors Nl ∈ Yl. The corresponding HR neighbors
Nh ∈ Yh are used to reconstruct the HR embedding xh,
which provides the high frequency information of human
faces. Finally, the low frequency part from the raw data and
the learned high frequency part are fused to generate the final
super-resolved and recovered results.

A. Joint Scale-Independent RGBD-P Feature

For RGB-D super resolution, the noise problem, scale
problem and ambiguity problem between LR/HR pairs and
RGB/D pairs are three main issues. To tackle these issues,
the RGBD-P feature is proposed for similarity measurement
and depth map reconstruction. We combine high-level cues of
human faces with low-level RGBD cues, and all theses cues
are carefully designed to be scale-independent.

We start with a face detection and a landmark localization
[19]. Each face is annotated by landmark points that locate
facial components of interest. As shown in Figure 2, we
concentrate on the eyes, nose and mouth regions. The patch
features of four component regions are then extracted to form
specialized dictionaries Yi, i ∈ {1, 2, 3, 4}. And each region
of the testing image is reconstructed using the corresponding
dictionaries. After facial component decomposition, each patch
is implicitly classified and with the help of this high-level
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Fig. 2. Facial component decomposition. From left to right: a face image,
detected landmarks and facial component regions

classification cue, the obtained neighbors are more reliable,
as shown in Figure 3(b) and (d). In addition, we enrich
source patches by including the mirror symmetry of the facial
component regions based on the symmetry of human faces.
For simplicity, in the following sections, we use Y to refer to
the four training sets Yi.

Then, in the training phase, we extract RGBD-P features
of source patches as {yl,yc,yp,yh}, where yl and yh are
the low and high frequency depth features, respectively. yc
describes the intensity feature of the color image. Furthermore,
yp depicts the position feature.

Low Frequency Depth Features: Let ȳ denote the low
frequency component of y and it is defined by ȳ = DT (Dy)
where D is bicubic downsampling and DT is bicubic up-
sampling. Then the low frequency depth feature is given by:
yl = [∇ȳ;∇2ȳ;wdȳnorm], where ∇ and ∇2 are the first and
second derivatives, respectively. ȳnorm is the normalized depth
with zero means to cope with the scale problem.

Intensity Features: yc = [Inorm; Iedge] contains intensity
and edge information. Iedge is obtained by calculating the
maximum gradient magnitude among the RGB channels and
normalizing to have 1 as the maximum element.

Position Features: yp = [x/W ; y/H], where (x, y) are
the coordinates of the patch center and [W,H] are the width
and height of the facial component region. Each component is
aligned implicitly after facial component decomposition and
the localization of a patch in its corresponding region can
be an important high-level cue for neighborhood searching.
To determine its reliably, we perform an experiment on the
impact of the position features. As shown in Figure 3(b) and
(d), the ambiguity problem is effective resolved.

High Frequency Depth Features: yh = [δy;∇y], where
δy = y − ȳ. To overcome the noise problem in the degraded
LR depth map and restore precise facial structures, we put
forward the gradients ∇y of noise-free high-quality depth
map, which forms the relative elevation of the face priors.

Meanwhile, in the testing phase, target image patch features
are extracted in similar ways: {xl,xc,xp}, where the low
frequency component of x is calculated by x̄ = DTx.

Given the joint scale-independent RGBD-P features, we
formulate a measure for two patches:

dist(xl,yl) = ||F (xl)− F (yl)||22, (1)

where F (xl) = [xl;wcxc;wpxp] and wc, wp are the weights
to combine the depth, intensity and position information.

(a) Target patch

(b) Facial component decomposition + RGBD-P feature

(c) RGBD-P feature

(d) Facial component decomposition + RGBD feature

Fig. 3. Influence factors for target patch neighborhood searching. (a) The
target patch is shown in the yellow rectangle. To better recognize the content
of an patch, expanded boundaries are added to all the patches as shown in
the blue rectangle. For space saving, we do not show the corresponding depth
maps. (b) The five most similar patches found based on RGBD-P feature in
the nose component dataset. (c) The nostril is matched to the corners of the
mouth if using the general face dataset. (d) Removing position features (by
setting wp = 0) leads to failure search. See the fourth patch (the corner of
the eye).

B. Depth Map Reconstruction via Neighborhood Regression

By jointly considering the proposed RGBD-P features,
we are capable to find reliable similar patches to form K
neighborhoods N i

l = [yi1l ,y
i2
l , ...,y

iK
l ] for each patch xil .

Following the standard neighbor embedding procedure, the
regression weight αi ∈ RK is calculated by:

min
αi

||xil −N i
l αi||22 + µ||αi||22, (2)

where µ is the sparse coefficient. Next, the corresponding HR
neighbors N i

h = [yi1h ,y
i2
h , ...,y

iK
h ] are used to reconstruct the

high frequency information:

xih = N i
hαi. (3)

After that, we average the feature values in overlapped
regions between adjacent patches and patch features xh are
merged into the image space, resulting in the high frequency
details and facial structures {δX,∇X}.

Finally, the HR depth map Xh is estimated by combining
low-frequency information X̄ = DTXl, high-frequency de-
tails δX and facial structure priors ∇X:

Xh = arg min
u
||∇xu−∇xX||22 + ||∇yu−∇yX||22

+ λ||u− X̄− δX||22,
(4)
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(a) (b)

(c) (d) (e)

Fig. 4. The impact of gradient terms. (a) The reconstruction result without
gradient terms (λ = 0). (b) The reconstruction result with λ = 1. (c) and (e)
are the gradients of (a) and (b) respectively in the x and y directions. (d) are
∇xX and ∇yX, which provide reliable facial structure information.

where ∇xX and ∇yX are the x component and y component
of ∇X and λ balances three terms. As shown in Figure 4,
∇X imposes high-quality facial structure priors on the noisy
depth map and creates smoother results.

C. Multi-Scale Solution

Since the ambiguity gets severer when the scale different
gets greater, we take the multi-scale strategy to address this
issue. Specifically, for the scale l, the training set is obtained
using the downsampled source color images and depth maps
with factor 1/2l−1, and the reconstruction result at scale l
forms the LR target depth map at scale l − 1.

III. EXPERIMENTAL RESULTS AND ANALYSIS

The proposed method is implemented on Matlab R2014a
platform. We first compare our method with state-of-the-art
depth map enhancement methods on the synthetic depth maps
derived from 3D face models in the BU-3DFE dateset [20].
Both noise-free and noisy cases are considered. Beyond these
simulations, we evaluate our method on the real world data
collected by Kinect cameras. More experimental results can
be found in the supplemental material. In the experiments, we
set patch size n = 9 × 9. The dictionary size N is 100, 000,
and for each patch K = 9 nearest neighbors are searched.
For joint scale-independent RGBD-P feature extractions, the

weights between different terms are set to wd = 0.1, wc =
3 and wc = 81 for all experiments, which demonstrates the
robustness of the proposed feature. The sparse coefficient µ in
the neighborhood regression is 0.15. Meanwhile, the factor λ
to control the depth map smoothness is set to 4 in the noise-
free case. For noisy depth map, it is empirically chosen 0.25,
1 and 1 for 2×, 4× and 8× upsampling, respectively.

A. Super Resolution of Synthetic Facial Depth Data

The BU-3DFE dateset is used to construct the dictionaries
and testing data. Figure 5 shows an example of the synthetic
RGB-D data. We take 70 3D face models and synthesize depth
maps using the z-axis data. The corresponding color image
is obtained from the textured models. The rest of the face
models in the dataset form our testing data in the following
experiments.

(a) (b) (c) (d)

Fig. 5. RGB-D data construction for experiments. (a) and (b) 3D face mesh
and the corresponding texture from BU-3DFE dataset. (c) and (d) synthetic
facial depth map and color image.

1) Noise-Free Testing Data: We apply the proposed method
to noise-free facial depth maps. We compare with methods
from [7]1, [8]2 and [9]3, which can be representative for
filter-based, optimization-based and learning-based techniques,
respectively. The training data used for [9] is identical to
that used in our method. Table I reports the comparison of
2×, 4× and 8× upsampling in terms of Root-Mean-Square
Error (RMSE) and the proposed method obtains lowest RMSE.
Kiechle’s method [9] also achieves low RMSE, indicating
that the depth reconstruction can be well improved through
learning from high-quality depth maps. The first row of Figure
6 gives the detailed qualitative comparison of 4× upsampling
for the Woman1 example. Judging from the difference map,
the result of the proposed method is the closest to the ground
truth.

2) Noisy Testing Data: The experiments for nosiy facial
depth map super resolution is conducted. The quantitative and
qualitative comparisons are given in Table II and the second
row of Figure 6. Without sufficient reliable depth information,
the filter-based method [7] produces distinct texture copying
artifacts. Ferstl’s method [8] successfully suppresses the noise
while importing noticeable false reconstruction result. For
instance, the sudden change around the nose and eyeball,

1Code from http://research.microsoft.com/en-us/um/people/kahe/eccv10/
2Code from http://rvlab.icg.tugraz.at/project page/project tofusion/project

tofsuperresolution.html
3Code from http://www.gol.ei.tum.de/index.php?id=6&L=1
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(a) Input RGBD pairs (b) He [7] (c) Ferstl [8] (d) Kiechle [9] (e) Ours (f) Groundtruth

Fig. 6. Comparisons on the BU-3DFE dataset. The first row shows an example of 4× upsampling on noise-free data and the second row shows an example
of 8× upsampling on noisy data.

TABLE I
UPSAMPLING OF NOISE-FREE BU-3DFE DATA

Woman1 Woman2 Man1 Man2
×2 ×4 ×8 ×2 ×4 ×8 ×2 ×4 ×8 ×2 ×4 ×8

He et al.[7] 0.659 0.904 1.637 0.607 0.807 1.363 0.639 0.926 1.632 0.640 0.795 1.284
Ferstl et al.[8] 0.677 0.796 1.052 0.630 0.730 1.059 0.689 0.841 1.294 0.656 0.720 0.850

Kiechle et al.[9] 0.604 0.624 0.801 0.575 0.596 0.694 0.574 0.596 0.863 0.617 0.639 0.746
Ours 0.535 0.598 0.633 0.505 0.567 0.603 0.506 0.571 0.636 0.541 0.609 0.622

TABLE II
UPSAMPLING OF NOISY BU-3DFE DATA

Woman1 Woman2 Man1 Man2
×2 ×4 ×8 ×2 ×4 ×8 ×2 ×4 ×8 ×2 ×4 ×8

He et al.[7] 1.897 2.175 2.624 1.834 2.045 2.603 1.910 2.133 2.705 1.856 2.079 2.476
Ferstl et al.[8] 1.293 2.352 2.516 1.199 1.840 2.563 1.310 2.032 2.618 1.245 1.965 2.330

Kiechle et al.[9] 5.446 6.836 8.340 5.314 6.875 8.211 5.558 6.777 8.144 5.495 6.901 8.101
Ours 1.185 1.800 2.325 1.031 1.717 2.280 1.191 1.790 2.191 1.156 1.749 2.149

which is clearly misled by the color image. The learning-based
method in [9] is severely affected by the noise and produces
some impulsive noise. By comparison, thanks to the proposed
RGBD-P features, our method is capable of using the low-
level and high-level cues to obtain reliable high-quality depth
gradients and produces ideal results.

B. Super Resolution of Real World Kinect Facial Depth Data

In the end, we apply the proposed method to real world
Kinect facial depth data. In the experiment, the facial depth
maps are upsampled by a factor of 8. Figure 7 illustrates that
the proposed method preserves most of the facial components,
and the boundaries in the side view are quite smooth. The
sudden change in depth map reconstructed by the method in
[9] leads to the stepping artifacts on 3D surfaces. Although
Ferstl’s method [8] generates smoother results, it cannot re-
cover noses and lips that matches the normal facial physical
structures. Please enlarge and view these figures on the screen
for better comparison.

IV. CONCLUSION

We present a novel facial depth map enhancement method
via neighbor embedding. We decompose the facial depth
map into four facial regions to seek the high-level position

cues. We combine low-level RGB-D cues and these high-
level cues to form a joint RGBD-P feature for better similarity
measurement. The proposed neighbor embedding framework
can learn high-quality facial details and structures to signif-
icantly improve facial depth reconstruction. We validate the
superiority of our method by comparisons with state-of-the-
art technologies.
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